Modeling methane emissions from arctic lakes: Model development and sitelevel study

نویسندگان

  • Zeli Tan
  • Qianlai Zhuang
  • Katey Walter Anthony
چکیده

To date, methane emissions from lakes in the pan-arctic region are poorly quantified. In order to investigate the response of methane emissions from this region to global warming, a process-based climate-sensitive lake biogeochemical model was developed. The processes of methane production, oxidation, and transport were modeled within a one-dimensional sediment and water column. The sizes of C-enriched and C-depleted carbon pools were explicitly parameterized. The model was validated using observational data from five lakes located in Siberia and Alaska, representing a large variety of environmental conditions in the arctic. The model simulations agreed well with the measured water temperature and dissolved CH4 concentration (mean error less than 1 C and 0.2 lM, respectively). The modeled CH4 fluxes were consistent with observations in these lakes. We found that bubbling-rate-controlling nitrogen (N2) stripping was the most important factor in determining CH4 fraction in bubbles. Lake depth and ice cover thickness in shallow waters were also controlling factors. This study demonstrated that the thawing of Pleistocene-aged organic-rich yedoma can fuel sediment methanogenesis by supplying a large quantity of labile organic carbon. Observations and modeling results both confirmed that methane emission rate at thermokarst margins of yedoma lakes was much larger (up to 538 mg CH4 m 22 d) than that at nonthermokarst zones in the same lakes and a nonyedoma, nonthermokarst lake (less than 42 mg CH4 m 22 d). The seasonal variability of methane emissions can be explained primarily by energy input and organic carbon availability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry

The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in twoways: thewarming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unifiedmodeling framework. Herewe ada...

متن کامل

Impact of terrestrial carbon input on methane emissions from an Alaskan Arctic lake

[1] Arctic warming is expected to increase thermokarst erosion in thaw lakes, thus inducing large emissions of CH4 to the atmosphere. To reduce uncertainties about the mechanisms, magnitude and timing of methane emissions, we conducted an in-situ experiment to simulate lake expansion following thermokarst erosion. Three tundra horizons were excavated, incubated at the bottom of a thaw lake and ...

متن کامل

Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentratio...

متن کامل

Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)

One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for ...

متن کامل

Estimation of gas emission released from a municipal solid waste landfill site through a modeling approach: A case study, Sanandaj, Iran

Sanitary landfill is the common strategy for municipal solid waste management in developing countries. Anaerobic decomposition of disposed wastes in landfill under favorable conditions will lead to the landfill gas (LFG) emissions, considering as emerging air pollutants. The emission of greenhouse gases, including methane, resulting from municipal solid waste disposal and treatment processes ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015